24 research outputs found

    Systematic review of communication technologies to promote access and engagement of young people with diabetes into healthcare

    Get PDF
    Background: Research has investigated whether communication technologies (e.g. mobile telephony, forums, email) can be used to transfer digital information between healthcare professionals and young people who live with diabetes. The systematic review evaluates the effectiveness and impact of these technologies on communication. Methods: Nine electronic databases were searched. Technologies were described and a narrative synthesis of all studies was undertaken. Results: Of 20,925 publications identified, 19 met the inclusion criteria, with 18 technologies assessed. Five categories of communication technologies were identified: video-and tele-conferencing (n = 2); mobile telephony (n = 3); telephone support (n = 3); novel electronic communication devices for transferring clinical information (n = 10); and web-based discussion boards (n = 1). Ten studies showed a positive improvement in HbA1c following the intervention with four studies reporting detrimental increases in HbA1c levels. In fifteen studies communication technologies increased the frequency of contact between patient and healthcare professional. Findings were inconsistent of an association between improvements in HbA1c and increased contact. Limited evidence was available concerning behavioural and care coordination outcomes, although improvement in quality of life, patientcaregiver interaction, self-care and metabolic transmission were reported for some communication technologies. Conclusions: The breadth of study design and types of technologies reported make the magnitude of benefit and their effects on health difficult to determine. While communication technologies may increase the frequency of contact between patient and health care professional, it remains unclear whether this results in improved outcomes and is often the basis of the intervention itself. Further research is needed to explore the effectiveness and cost effectiveness of increasing the use of communication technologies between young people and healthcare professionals

    Measuring body composition in overweight individuals by dual energy x-ray absorptiometry

    Get PDF
    BACKGROUND: Dual energy x-ray absorptiometry (DXA) is widely used for body composition measurements in normal-weight and overweight/obese individuals. The limitations of bone densitometers have been frequently addressed. However, the possible errors in assessing body composition in overweight individuals due to incorrect positioning or limitations of DXA to accurately assess both bone mineral density and body composition in obese individuals have not received much attention and are the focus of this report. DISCUSSION: We discuss proper ways of measuring overweight individuals and point to some studies where that might not have been the case. It appears that currently, the most prudent approach to assess body composition of large individuals who cannot fit under the scanning area would be to estimate regional fat, namely the regions of thigh and/or abdomen. Additionally, using two-half body scans, although time consuming, may provide a relatively accurate measurement of total body fat, however, more studies using this technique are needed to validate it. SUMMARY: Researchers using bone densitometers for body composition measurements need to have an understanding of its limitations in overweight individuals and address them appropriately when interpreting their results. Studies on accuracy and precision in measurements of both bone and soft tissue composition in overweight individuals using available densitometers are needed

    Metabolic Impact of Adult-Onset, Isolated, Growth Hormone Deficiency (AOiGHD) Due to Destruction of Pituitary Somatotropes

    Get PDF
    Growth hormone (GH) inhibits fat accumulation and promotes protein accretion, therefore the fall in GH observed with weight gain and normal aging may contribute to metabolic dysfunction. To directly test this hypothesis a novel mouse model of adult onset-isolated GH deficiency (AOiGHD) was generated by cross breeding rat GH promoter-driven Cre recombinase mice (Cre) with inducible diphtheria toxin receptor mice (iDTR) and treating adult Cre+/−,iDTR+/− offspring with DT to selectively destroy the somatotrope population of the anterior pituitary gland, leading to a reduction in circulating GH and IGF-I levels. DT-treated Cre−/−,iDTR+/− mice were used as GH-intact controls. AOiGHD improved whole body insulin sensitivity in both low-fat and high-fat fed mice. Consistent with improved insulin sensitivity, indirect calorimetry revealed AOiGHD mice preferentially utilized carbohydrates for energy metabolism, as compared to GH-intact controls. In high-fat, but not low-fat fed AOiGHD mice, fat mass increased, hepatic lipids decreased and glucose clearance and insulin output were impaired. These results suggest the age-related decline in GH helps to preserve systemic insulin sensitivity, and in the context of moderate caloric intake, prevents the deterioration in metabolic function. However, in the context of excess caloric intake, low GH leads to impaired insulin output, and thereby could contribute to the development of diabetes

    Techniques of EMG signal analysis: detection, processing, classification and applications

    Get PDF
    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications
    corecore